Acute and chronic resistant physical exercise with or without supplementation of whey proteins on MTOR gene expression, MURF-1, MAFBX
Abstract
Introduction: Acute and chronic resisted physical exercise is characterized by the performance of short-term repeated series stimuli against resistance, as well as being a potent stimulus to protein synthesis of skeletal muscle. This change in terms of increased skeletal muscle mass depends on the temporal relationship between muscle protein synthesis and muscle protein degradation. The investigation of these pathways is of great importance for the study of skeletal muscle hypertrophy. Studies performed with laboratory animals such as rats or mice have great relevance due to some characteristics such as greater homogeneity of samples and easier control of variables such as training load and especially on caloric intake. In the scientific literature there are several models of acute and chronic physical exercise performed with rats and mice, in addition to supplementation by different protein sources, aiming to evaluate the behavior of these protein synthesis and degradation regulation pathways. Aim: A narrative review of the effects of acute and chronic resistance exercise with or without supplementation on the gene expression of MTOR, MURF-1, MAFBX. Materials and methods: This review was based on the Peres Capes portal; Medline and Lilacs; PubMed; Scielo.org; Scielo.br; Redib; Dialnet Results and discussion: Of the 24 articles reviewed, they were divided into 13 different intervention models. Models separated by time of stimulus: acute or chronic; stimulus type: aerobic, resisted or combined; experimental model and with or without whey protein supplementation. Conclusion: Regarding the study of protein synthesis and degradation pathways, it was possible to observe the use of different experimental models and types of stimulation.
References
-Aparício, V.A.; Nebot, E.; Porres, J.M.; Ortega, F.B.; Heredia, J.M.; López-Jurado, Ramires, P.A. Effects of High-Whey-Protein Intake and resistance training on renal, bone and metabolic parameters in rats. British Journal of Nutrition. Vol. 105. Num. 6. p. 836-845. 2011.
-Bae, J.Y.; Shim, K.O.; Woo, J.; Woo, S.H.; Jang, K.S.; Lee, Y.H.; Kang, S. Exercise and dietary change ameliorate high fat diet induced obesity and insulin resistance via MTOR sinaling pathway. Journal of Exercise Nutrition & Biochemistry. Vol. 20. Num. 2. p. 28-33. 2016.
-Bodine, S. C. Identification of Ubiquitin Ligases Required for Skeletal Muscle Atrophy. Science. [s.l.]. Vol. 294. Num. 5547.p.1704-1708. 2001.
-Drummond, M.J.; Dreyer, H.C.; Pennings, B.; Fry, C.S.; Dhanani, S.; Dillon, E.L.; Sheffield-Moore, M.; Volpi, E.; Rasmussen, B.B. Skeletal muscle protein anabolic response to resistance exercise and essential amino acids is delayed with aging. Journal of Applied Physiology. [s.l.]. Vol. 104. Núm. 5. p.1452-1461. 2008.
-Furrer, R.; Jaspers, R.T.; Baggerman, H.L.; Bravenboer, N.; Lips, P.; Haan, A. Attenuated increase in maximal force of rat medial gastrocnemius muscle after concurrent peak power and endurance training.Biomed Research International. Vol. 2013. 9p. 2013.
-Galna, B.; Peters, A.; Murphy, A.; Morris, M. Obstacle crossing deficits in older adults: as ystematic review. Gait and Posture. Vol. 30. Num. 3. p. 270-275. 2009.
-Gil, J. H.; Kim, C.K. Effects of different doses of leucine ingestion following eight weeks of resistance exercise on protein synthesis and hypertrophy of skeletal muscle in rats.Journal of Exercise Nutrition and Biochemistry. Vol. 19. Num. 1. p. 31-38. 2015.
-Gordon, B.S.; Kelleher, A.R.; Kimball, S.R. Regulation of muscle protein synthesis and the effects of catabolic states. The International Journal of Biochemistry & Cell Biology. [s.l.]. Vol. 45. Núm. 10. p.2147-2157. 2013.
-Guertin, D.A.; Sabatini, D.M. Defining the Role of MTOR in Cancer. Cancer Cell. Vol. 12. Núm. 1. p. 9-22. 2007.
-Haraguchi, F.K.; Silva, M. E.; Neves, L.X.; Santos, R.C.; Pedrosa, M.L. Whey proteins precludes lipid andprotein oxidation and improves body weigth gain in resistance-treined rats. European Journal of Nutrition. Vol. 50. Num. 05. p. 331-339. 2011.
-Haraguchi, F.K.; Magalhães, C.L.B.;Neves, L.X.; Santos, R.C.; Pedrosa, M.L.; SILVA, M.E. Whey protein modifies genes expression related to protein metabolism affecting muscle weigth in resistance-exercised rats. Nutrition. Vol. 30. p. 876-871. 2014.
-Hellyer, N. J.; Nokleby, J.J.; Thicke, B.M.; Zhan, Z-Z.; Sieck, G.C.; Mantilla, C.L. Reduced Ribosomal Protein S6 Phosphorylation After Progressive Resistance Exercise in Growing Adolescent Rats. Journal of Strength and Conditioning Research, [s.l.]. Vol. 26. Num. 6. p. 1657-1666. 2012.
-Karagounis, L. G.; Yaspelkis B. B.; Reeder, D.W.; Lancaster, G.I.; Hawley, J.A.; Coffey, V.G. Contraction-induced changes in TNFα and Akt-mediated signalling are associated with increased myofibrillar protein in rat skeletal muscle. European Journal of Applied Physiology, [s.l.]. Vol. 109. Núm. 5. p.839-848. 2010.
-Khamoui, A.V.; Park, B-S.; Kim, D-H.; Yeh, M.C.; Oh, S-L.; Elam, M.L.; Jo, E.; Arjmandi, B.H.; Salazar, G.; Grant, S.C.; Contreras, R.J.; Lee, W.J.; Kim, J-S. Aerobic and resistance training dependente skeletal muscle plasticity in the colon-26 murine modelo f cancer cachexia. Metabolism Clinical and Experimental. Vol. 65. Num. 5. p. 685-698. 2016.
-Krug, A.L.O.; Macedo, A.G.; Zago, A.S.; Rush, J.W.E.; Santos, C.F.; Amaral, S.L. High-Intensity resistance training attenuates dexamethasone-induced muscle atrophy. Muscle & Nerve. Vol. 53. p. 779-788. 2016.
-Laplante, M.; Sabatini, D.M. Regulation of mTORC1 and its impact on gene expression at a glance. Journal of Cell Science. Vol. 126. Núm. 8. p. 1713-1719. 2013.
-Luo, L.; Lu, A-M.; Wang, Y.; Hong, A.; Chen, Y.; Hu, J.; Li, X.; Qin, Z-H. Chronic resistance training activates autophagy and reduces apoptosis of muscle cells by modulating IGF-1 and its receptors, Akt/mTOR and Akt/FOXO3a signaling in aged rats. Experimental Gerontology. Vol. 48. Num. 4. p. 427-436. 2013.
-Macedo, A.C.; Krug, A.L.O.; Herrera, N.A.; Zago, A.S.; Rush, J.W.E.; Amaral, S.L. Low-intensity resistance training attenuates dexamethasone-induced atrophy in the flexor hallucis longus muscle.The Journal of Steroid Biochemistry and Molecular Biology. Vol. 143. p. 357-364. 2014.
-Medeiros, C.; Frederico, M.J.; Da Luz, G.; Pauli, J.R.; Silva, A.S.; Pinho, R.A.; Velloso, L.A.; Ropelle, E.R.; De Souza, C.T. Exercise training reduces insulin resistance and upregulates the mTOR/p70S6k pathway in cardiac muscle of diet-induced obesity rats. Journal of Cellular Physiology. [s.l.]. Vol. 226. Núm. 3. p. 666-674. 2010.
-Mcglory, C.; Phillips, S.M. Exercise and the Regulation of Skeletal Muscle Hypertrophy. In: Progress in Molecular Biology and Translational Science. [s.l.] p. 153-173. 2015.
-Navarro, D. N.; Navarro, A. C. Quantificação e qualificação de estudos científicos sobre o ensino de química-eletroquímica. 12º Congresso Nacional de Iniciação Científica. 2012.
-Nunes, R.; Silva, P.; Alves, J.; Stefani, J.; Petry, M.; Rhoden, C.; Lago, P.D.; Schneider, C.D. Applied Physiology Nutrition and Metabolism. Vol. 38. Num. 11. p. 1166-1169. 2013.
-Ogasawara, R.; Kobayashi, K.; Tsutaki, A.; Lee, K.; Abe, T.; Fujita, S.;Nakazato, K.; Ishii, N. MTOR signaling response to resistance exercise is altered by chronic resistance training and detraining in skeletal muscle. Journal of Applied Physiology. [s.l.]. Vol. 114. Num. 7. p. 934-940. 2013.
-Ogasawara, R.; Nakazato, K.; Sato, K.; Boppart, M.D.; Fujita, S. Resistance exercise increases active MMP andβ1-integrin protein expression in skeletal muscle.Physiological Reports. Vol. 2. Num. 11. p. 1-8. 2014a.
-Ogasawara, R.; Sato, K.; Matsutani, K.; Nakazato, K.; Fujita, S. The order of concurrent endurance and resistance exercise modifies mTOR signaling and protein synthesis in rat skeletal muscle.American Journal of Physiology Endocrinology and Metabolism. Vol. 306. Num. 10. p. 1155-1162. 2014b.
-Phillips, S.M. Physiologic and moleculares bases of muscle hypertrophy and atrophy: impact of resistance exercise on human skeletal muscle (protein and exercise dose effects). Applied Physiology, Nutrition, And Metabolism. Vol. 34. Núm. 3. p. 403-410. 2009.
-Rom, O.; Reznick, A.Z. The role of E3 ubiquitin-ligases MuRF-1 and MAFBXin loss of skeletal muscle mass. Free Radical Biology andMedicine. Vol. 98. p. 218-230. 2016.
-Sharp, M.H.; Lowery, R.P.; Mobley, P.; Fox, C.D.; Souza, E.O.; Shields, K.A.; Healy, J.C.; Arick, N.Q.; Thompsom, R.M.; Roberts, M.D.; Wilsom, J.M. The effects of fortetropin supplementation on body composition, strength, and power in humans and mechanism of action in a rodent model. Journal of the American College of Nutrition. p. 1-13. 2016.
-Sudo, M.; Ando, S.; Poole, D.C.; Kano, Y. Blood flow restriction prevents muscle damage but not protein synthesis sinaling following eccentric contractions. Physiological Reports. Vol. 3. Num. 7. p. 1-10. 2015.
-Thomas, J.R.; Nelson, J.K.; Silverman, S.J. Métodos de pesquisa em atividade física. 5ª edição. Porto Alegre. Artmed. 2007.
-Zanchi, N.E.; Siqueira Filho, M.A.; Lira, F.S; Rosa, J.C.; Yamashita, A.S.; Carvalho, C.R.O.; Seelaender, M. Lancha Junior, A. H. Chronic resistance training decreases MuRF-1 and Atrogin-1 gene expression but does not modify Akt, GSK-3βand p70S6K levels in rats. European Journal Applied Physiology. Vol. 106. Num. 3. p. 415-423. 2009.
-Wang, X. H.; Du, J.; Klein, J.D.; Bailey, J.L.; Mitch, W.E.; Exercise ameliorates chronic kidney disease–induced defects in muscle protein metabolism and progenitor cell function. Kidney International. [s.l.]. Vol. 76. Núm. 7. p. 751-759. 2009.
-Wang, W.; Choi, R. H.; Solares, G.J.; Tseng, H-M.; Ding, Z.; Kim, K.; Ivy, J.L. L-Alanyglutamine inhibits sinaling proteins that activate protein degradation, but does not affects proteins that activate synthesis after an acute resistance training. Amino Acids. Vol. 47. Num. 7. p. 1389-1398. 2015.
Authors who publish in this journal agree to the following terms:
- Authors retain the copyright and grant the journal the right of first publication, with work simultaneously licensed under the Creative Commons Attribution License BY-NC which allows the sharing of the work with acknowledgment of the authorship of the work and initial publication in this journal.
- Authors are authorized to enter into additional contracts separately for non-exclusive distribution of the version of the work published in this journal (eg, publishing in institutional repository or book chapter), with acknowledgment of authorship and initial publication in this journal.
- Authors are allowed and encouraged to post and distribute their work online (eg, in institutional repositories or on their personal page) at any point before or during the editorial process, as this can bring about productive change as well as increase impact and impact. citation of published work (See The Effect of Free Access).