Acute effects of different intensities on the muscle power production in football players: a systematic review

  • Luiz Carlos Rodrigues Junior Escola de Educação Física, Fisioterapia e Dança da Universidade Federal do Rio Grande do Sul - ESEFID/UFRGS, Porto Alegre, Rio Grande do Sul, Brasil.
  • Maurício Pechina Escola de Educação Física, Fisioterapia e Dança da Universidade Federal do Rio Grande do Sul - ESEFID/UFRGS, Porto Alegre, Rio Grande do Sul, Brasil.
  • Carlos Leonardo Machado Escola de Educação Física, Fisioterapia e Dança da Universidade Federal do Rio Grande do Sul - ESEFID/UFRGS, Porto Alegre, Rio Grande do Sul, Brasil.
  • Salime Lisboa Escola de Educação Física, Fisioterapia e Dança da Universidade Federal do Rio Grande do Sul - ESEFID/UFRGS, Porto Alegre, Rio Grande do Sul, Brasil.
  • Alexandra Vieira Escola de Educação Física, Fisioterapia e Dança da Universidade Federal do Rio Grande do Sul - ESEFID/UFRGS, Porto Alegre, Rio Grande do Sul, Brasil.
  • Giovani Cunha Escola de Educação Física, Fisioterapia e Dança da Universidade Federal do Rio Grande do Sul - ESEFID/UFRGS, Porto Alegre, Rio Grande do Sul, Brasil.
Keywords: Physical Conditioning Human, Resistance Training, Football

Abstract

The development of muscular power is among the most sought-after strategies by coaches and staffs in sports. Recently, the use of optimal training loads for exercise prescription has emerged as a highly effective approach since it seeks to find and utilize the load / intensity in which the highest muscular power output is observed. In sports as football, the optimal load for power production remains unknown. Through a systematic review, the present study had the aim to verify the effects of different intensities (e.g. load percentage relative to maximal strength [1-RM] and body mass) in the acute power output of lower limbs in football athletes. Throughout research in the electronic databases PubMed, Scopus, and Web of Science, 6345 studies were found. After research trials, 193 studies matched the stablished selection criteria for this study. Five studies were selected for the study. The results pointed the optimal load for the half squat is between 46% and 76% of the athletes’ body mass; the load for the jump squat was when a jump height of 20cm was attained, also the optimal load found was 1m.s-1 when the intensity was measured by the mean propulsive velocity (VPM). Although the results suggest optimal loads for power training of lower limbs in football athletes, studies with standardized assessment parameters are required.

References

-Alcaraz, P.E.; Romero-Arenas, S.; Vila, H.; Ferragut, C. Power-load curve in trained sprinters. The Journal of Strength & Conditioning Research. Vol. 25.Num. 11. 2011. p. 3045-3050.

-Baker, D.; Nance, S.; Moore, M. The load that maximizes the average mechanical power output during jump squats in power-trained athletes. The Journal of Strength & Conditioning Research. Vol. 15.Num. 1. 2001. p. 92-97.

-Cormie, P.; McCaulley, G.O.; McBride, J.M. Power versus strength-power jump squat training: influence on the load-power relationship. Medicine and Science in Sports & Exercise.Vol. 39.Num. 6.2007. p. 996-1003.

-Cormie, P.; McGuigan, M.R.; Newton, R.U. Developing maximal neuromuscular power: Part 2 - training considerations for improving maximal power production. Sports Medicine. Vol. 41.Num. 2. 2011. p. 125-146.

-Cronin, J.; Sleivert, G. Challenges in understanding the influence of maximal power training on improving athletic performance. Sports Medicine. Vol. 35. Num. 3. 2005. p. 213-234.

-Dugan, E.L.; Doyle, T.L.A.; Humphries, B.; Hasson, C.J.; Newton, R.U. Determining the optimal load for jump squats: A review of methods and calculations. The Journal of Strength & Conditioning Research. Vol. 18.Num. 3. 2004. p. 668-674.

-Harris, G.R.; Stone, M.H.; O'Bryant, H.S.; Harold, S.P.; Christopher, M.; Johnson, R.L. Short-term performance effects of high power, high force, or combined weight-training methods. The Journal of Strength & Conditioning Research. Vol. 14. Num. 1. 2000. p. 14-20.

-Higgins, J.P.T.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M.J.; Welch, V.A. editors.Cochrane handbook for systematic reviews of interventions. Hoboken. John Wiley & Sons. 2019.

-Izquierdo, M.; Häkkinen, K.; Gonzalez-Badillo, J.J.; Ibáñez, J.; Gorostiaga, E.M. Effects of long-term training specificity on maximal strength and power of the upper and lower extremities in athletes from different sports. European Journal of Applied Physiology. Vol. 87. Num. 3. 2002. p. 264-271.

-Kaneko, M.; Fuchimoto, T.; Toji, H.; Suei, K. Training effect of different loads on thd force-velocity relationship and mechanical power output in human muscle. Scandinavian Journal of Medicine & Science in Sports. Vol. 5. 1983. p. 50-55.

-Kilduff, L.P.; Bevan, H.; Owen, N.; Kingsley, M.I.C.; Bunce, P.; Bennett, M.; Cunningham, D. Optimal loading for peak power output during the hang power clean in professional rugby players. International Journal of Sports Physiology & Performance. Vol. 2.Num. 3. 2007. p. 260-269.

-Loturco, I.; McGuigan, M.R.; Rodríguez-Rosell, D.; Pereira, L.A.; Pareja-Blanco, F. A novel strategy to determine the one-repetition maximum in the jump squat exercise.Journal of Strength and Conditioning Research. 2020. No prelo.

-Loturco, I.; Nakamura, F.Y.; Tricoli, V.; Kobal, R.; Cal Abad, C.C; Kitamura, K.; Ugrinowitsch, C.; Gil, S.; Pereira, L.A.; González-Badillo, J.J. Determining the optimum power load in jump squats using the mean propulsive velocity. PloS one. Vol. 10.Num. 10. 2015a. p. 1-12.

-Loturco, I.; Pereira, L.A.; Cal Abad, C.C.; Gil, S.; Kitamura, K.; Kobal, R.; Nakamura, F.Y. Using Bar Velocity to Predict the Maximum Dynamic Strength in the Half-Squat Exercise. International Journal of Sports Physiology & Performance. Vol. 11.Num. 5. 2016a. p. 697-700.

-Loturco, I.; Pereira, L.A.; Cal Abad, C.D.; D’Angelo, R.A.; Fernandes, V.; Kitamura, K.; Kobal, R.; Nakamura, F.Y. Vertical and horizontal jump tests are strongly associated with competitive performance in 100-m dash events. The Journal of Strength & Conditioning Research. Vol. 29.Num. 7. 2015b. p. 1966-1971.

-Loturco, I.; Pereira, L.A.; Zanetti, V.; Kitamura, K.; Cal Abad, C.C.; Kobal, R.; Nakamura, F.Y. Mechanical Differences between Barbell and Body Optimum Power Loads in the Jump Squat Exercise.Journal of Human Kinetics. Vol. 54.Num. 1. 2016b. p. 153-162.

-Loturco, I.; Ugrinowitsch, C.; Roschel, H.; Tricoli, V.; González-Badillo, J.J. Training at the optimum power zone produces similar performance improvements to traditional strength training. Journal of Sports Science & Medicine. Vol. 12.Num. 1. 2013. p. 109-115.

-McBride, J.M.; Haines, T.L.; Kirby, T.J. Effect of loading on peak power of the bar, body, and system during power cleans, squats, and jump squats. Journal of Sports Sciences. Vol. 29.Num. 11. 2011. p. 1215-1221.

-McBride, J.M.; Triplett-McBride, T.; Davie, A.; Newton, R.U. The effect of heavy-vs. light-load jump squats on the development of strength, power, and speed. The Journal of Strength & Conditioning Research. Vol. 16.Num. 1. 2002. p. 75-82.

-Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; PRISMA Group.Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Annals of Internal Medicine.Vol. 151.Num. 4. 2009. p. 264-269.

-Moss, B.M.; Refsnes, P.E.; Abildgaard, A.; Nicolaysen, K.; Jensen, J. Effects of maximal effort strength training with different loads on dynamic strength, cross-sectional area, load-power and load-velocity relationships. European Journal of Applied Physiology & Occupational Physiology. Vol. 75.Num. 3. 1997. p. 193-199.

-Rahmani, A.; Viale, F.; Dalleau, G.; Lacour, J.R. Force/velocity and power/velocity relationships in squat exercise. European Journal of Applied Physiology. Vol. 84.Num. 3. 2001. p. 227-232.

-Requena, B.; González-Badillo, J.J.; Villareal, E.S.; Ereline, J.; García, I.; Gapeyeva, H.; Pääsuke, M. Functional performance, maximal strength, and power characteristics in isometric and dynamic actions of lower extremities in soccer players. The Journal of Strength & Conditioning Research. Vol. 23.Num. 5. 2009. p. 1391-1401.

-Slim, K.; Nini, E.; Damien, F.; Kwiatkowski, F.; Panis, Y.; Chipponi, J. Methodological index for non-randomized studies (MINORS): development and validation of a new instrument. ANZ Journal of Surgery. Vol. 73.Num. 9. 2003. p. 712-716.

-Soriano, M.A.; Jiménez-Reyes, P.; Rhea, M.R.; Marín, P.J. The optimal load for maximal power production during lower-body resistance exercises: a meta-analysis. Sports Medicine. Vol. 45.Num. 8. 2015. p. 1191-1205.

-Toji, H.; Kaneko, M. Effect of multiple-load training on the force-velocity relationship. The Journal of Strength & Conditioning Research. Vol. 18.Num. 4. 2004. p. 792-795.

-Toji, H.; Suei, K.; Kaneko, M. Effects of combined training programs on force-velocity relation and power output in human muscle. Japanese Journal of Physical Fitness & Sports Medicine. Vol. 44.Num. 4. 1995. p. 439-446.

-Turner, A.P.; Unholz, C.N.; Potts, N.; Coleman, S.G.S. Peak power, force, and velocity during jump squats in professional rugby players. The Journal of Strength & Conditioning Research. Vol. 26.Num. 6. 2012. p. 1594-1600.

-Wilson, G.J.; Newton, R.U.; Murphy, A.J.; Humphries, B.J. The optimal training load for the development of dynamic athletic performance. Medicine & Science in Sports & Exercise. Vol. 25.Num. 11.1993. p. 1279-1286.

Published
2023-01-15
How to Cite
Rodrigues Junior, L. C., Pechina, M., Machado, C. L., Lisboa, S., Vieira, A., & Cunha, G. (2023). Acute effects of different intensities on the muscle power production in football players: a systematic review. Brazilian Journal of Exercise Prescription and Physiology, 16(104), 385-395. Retrieved from https://www.rbpfex.com.br/index.php/rbpfex/article/view/2609
Section
Scientific Articles - Original