Analysis of latent clusters in people with hypertension and/or diabetes regarding the practice of physical activity

  • Eldys Myler Santos Marinho Mestre em Educação Física, Universidade Federal do Vale do São Francisco, Petrolina-PE, Brasil.
  • Johnnatas Mikael Lopes Doutor em Saúde Coletiva, Professor Adjunto da Universidade Federal do Vale do São Francisco, Departamento de Medicina, Paulo Afonso-BA, Brasil.
Keywords: Systemic arterial hypertension, Diabetes mellitus, Latent class analysis, Physical activity

Abstract

Chronic diseases such as hypertension and diabetes have a high global prevalence and are risk factors for several harmful outcomes for individual and collective health across the planet, making it necessary to employ assertive management, such as physical activity, to ensure better prognoses. The objective was to identify the existence of latent clusters in people with hypertension and/or diabetes regarding regular physical activity. This is a cross-sectional study with hypertensive and/or diabetic people from the Hiperdia program in Paulo Afonso - Bahia. 140 people participated in the study, of which 64.3% (90) were women and the overall average age was 66.55 (SD=8.9). According to theoretical assumptions, two latent classes presented better adjustment to the selected biopsychosocial variables (AIC=592; BIC=624). Class 1 (low informal social support, high BMI and high presence of depressive symptoms; Class 2 (high informal social support, high BMI and low presence of depressive symptoms). Pearson's Chi-square test revealed an association of latent classes with the level of physical activity (p=0.011), in which latent class 1 showed behavior more linked to insufficient levels of physical activity (62.2%; p=0.011). Furthermore, there was an association regarding the existence of a community representative, in which both classes demonstrated to be strongly associated with the absence of a person who represents the community (97.3%; 80.8%; p= 0.016). We concluded that the interaction of biopsychosocial aspects segments people with hypertension and/or diabetes, through classification algorithms, constituting internal heterogeneous groups in terms of their ability to adhere to regular physical activity.

References

-Asano, R.Y.; e colaboradores. Fatores associados a condição física ativa em pacientes com hipertensão arterial sistêmica: Um estudo transversal. R. bras. Ci. e Mov. Vol. 24. Num. 1. 2016. p. 5-15.

-Bakker, E.A.; e colaboradores. Physical activity and fitness for the prevention of hypertensionCurrent Opinion in CardiologyLippincott Williams and Wilkins. 2018.

-Colberg, S.R.; e colaboradores. Physical activity/exercise and diabetes: A position statement of the American Diabetes Association Diabetes Care. American Diabetes Association Inc. 2016.

-Cunha, R.M.; Souza, C.O.S.; Silva, J.F.; Silva, M.A. Physical activity level and anthropometric data regarding hypertensive and/ or diabetic people in a Brazilian city. Rev. salud pública. Vol. 14. Num. 3. 2012. p. 429-437.

-Firth, J.; e colaboradores. Motivating factors and barriers towards exercise in severe mental illness: A systematic review and meta-analysis. Psychological Medicine. Vol. 46. Num. 14. 2016. p. 2869-2881.

-Fu, M. ; e colaboradores. Using Latent Class Analysis to Identify Different Risk Patterns for Patients With Masked Hypertension. Frontiers in Cardiovascular Medicine. Vol. 8. 2021.

-Ghanbari, J.; e colaboradores. Subgroups of lifestyle patterns among hypertension patients: A latent-class analysis. BMC Medical Research Methodology. Vol. 18. Num. 1. 2018.

-Grossman, A.; Grossman, E. Blood pressure control in type 2 diabetic patients. Cardiovascular Diabetology. Vol. 16. Num. 1. 2017. p. 1-15.

-International Diabetes Federation. IDF diabetes atlas. 8th ed. Brussels: International Diabetes Federation; 2017.

-Júnior, G.J.M. nível de atividade física e fatores associados em pacientes hipertensos e diabéticos na cidade de caruaru-PE. Universidade Federal de Pernambuco. Dissertação de Mestrado. Recife. 2022.

-Kongsted, A.; Nielsen, A.M. Latent Class Analysis in health research. Journal of Physiotherapy. Vol. 63. Num. 1. 2017. p. 55-58.

-Lim, S.; Tucker, C.S.; Kumara, S. An unsupervised machine learning model for discovering latent infectious diseases using social media data. Journal of Biomedical Informatics. Vol. 66. 2017. p. 82-94.

-Lindsay, S.G.; e colaboradores. The association between social support and physical activity in older adults: A systematic review. International Journal of Behavioral Nutrition and Physical Activity Bio Med Central. 2017.

-Markman Filho, B.; e colaboradores. Diretrizes Brasileiras de Hipertensão Arterial-2020 Barroso et al. Arq Bras Cardiol. Arquivos Brasileiros de Cardilologia. Vol. 116. Num. 3. 2021. p. 516-658.

-Mcreynolds, J.L.; Rossen, E.K. Importance of Physical Activity, Nutrition, and Social Support for Optimal Aging. 2004.

-Monteiro, F.C.; e colaboradores. Factors associated with adherence to sports and exercise among outpatients with major depressive disorder. Trends Psychiatry Psychother. Vol. 2. Num. 1. 2021. p. 108-115.

-Newsom, J.T.; e colaboradores. Older adults’ physical activity-related social control and social support in the context of personal norms. Journal of Health Psychology. Vol. 27. Num. 3. 1 mar. 2022. p. 505-520.

-Peixoto, M.B.; e colaboradores. Apoio social e prática de atividade física no lazer em adolescentes: um estudo de base populacional. Revista Brasileira de Atividade Física & Saúde. Vol. 24. 2019. p. 1-8.

-Reis, H.H.T.; Marins, J.C.B. Physical activity level of diabetics and hypertenses registered in a hiperdia center. Arq. Ciênc. Saúde. Vol. 24. Num. 3. 2017. p. 25-30.

-Roohi, A.; e colaboradores. Unsupervised Machine Learning in Pathology: The Next Frontier. Surgical Pathology Clinics. Vol. 13. Num. 2. 2020. p. 349-358.

-Sociedade Brasileira de Diabetes. Diretrizes Sociedade Brasileira de Diabetes 2019-2020. Clannad. Vol. 8. 2021.

-Seol, R.; Chun, J.H. Classification of Type 2 Diabetes Incidence Risk and the Health Behavior of the 30-50-Year-Old Korean Adults: Latent Class Analysis. International Journal of Environmental Research and Public Health. Vol. 19. Num. 24. 2022.

-Shiriyedeve, S.; Dlungwane, T.P.; Tlou, B. Factors associated with physical activity in type 2 diabetes mellitus patients at a public clinic in Gaborone, Botswana, in 2017. African Journal of Primary Health Care and Family Medicine. Vol. 11. Num. 1. 2019. p. 1-7.

-Silva, B.P.; e colaboradores. Nível de atividade física de idosos hipertensos e sua associação com dados sociodemográficos e condições de saúde. Rev Pesqui Fisioter. Vol. 12. 2022. p.12:e4398. http://dx.doi.org/10.17267/2238-2704rpf.2022.e4398

-Sousa, B.A.; e colaboradores. Apoio social e atividade física de idosos: revisão sistemática de estudos observacionais. Revista Brasileira em Promoção da Saúde. Vol. 32. 2019. p. 1-11.

-Ware, D.; e colaboradores. Interrelationships between self-reported physical health and health behaviors among healthy US adults: From the NHANES 2009-2016. Public Health in Practice. Vol. 4. 2022.

-Weller, B.E.; Bowen; N.K.; Faubert, S.J. Latent class analysis: A guide to best practice. Journal of Black Psychology. Vol. 46. Num. 4. p. 287-311. 2020.

-Wu, Y.; e colaboradores. Applying latent class analysis to risk stratification of incident diabetes among Chinese adults. Diabetes Research and Clinical Practice. Vol. 174. 2021.

Published
2024-10-01
How to Cite
Marinho, E. M. S., & Lopes, J. M. (2024). Analysis of latent clusters in people with hypertension and/or diabetes regarding the practice of physical activity. Brazilian Journal of Exercise Prescription and Physiology, 18(116), 349-361. Retrieved from https://www.rbpfex.com.br/index.php/rbpfex/article/view/2887
Section
Scientific Articles - Original