Blood lactate concentration and delayed muscle soreness: A strategy of practical class for the teaching the integrated metabolic events
Abstract
Our study aimed to identify the mechanisms of action/removal of lactate in a state of exhaustive exercise and to monitor the damage onset muscle soreness (DOMS) progresses due to the fatigue installed. Computerized exercises on a treadmill and cycle ergometer were conducted during a class of Biochemistry of Exercise, with analysis of blood lactate at various times after exercise.For evaluation of DOMS, we useda scale of subjective perception.There was a significant increase (p<0.001) inlactate concentration immediately after exercisefor both exercise models, with a returnclose tonormal levels within1 hour after exhaustion.The manifestation of pain peaked between 24-72 hours after exercise, which led students to under stand that there are distinct metabolic strategies of recovery after exhaustive exercise performance
References
-Armstrong, R.B. Initial events in exercise-induced muscular injury. Medicine and Science in Sports and Exercise. Vol. 22. Num. 4. 1990. p. 429-435.
-Bonen, A. Lactate transporters (MCT proteins) in heart and skeletal muscles. Medicine and Science in Sports and Exercise. Vol. 32. Num. 4. 2000. p. 778-789.
-Byrnes, W.C.; Clarkson, P.M.; White, J.S.; Hsieh, S.S.; Frykman, P.N.; Maughan, R.J.; Farr, T.; Nottle, C.; Nosaka K.; Sacco, P.. Delayed onset muscle soreness following repeated bouts of downhill running. Journal of Applied Physiology. Vol. 59. Num. 3. 1985. p. 710-715.
-Cleak, M.J.; Eston, R.G. Delayed onset muscle soreness: mechanisms and management. Journal ofSports Sciences. Vol. 10. Num. 4. 1992. p. 325-341.
-Dolezal, B.A.; Potteiger, J.A.; Jacobsen, D.J.; Benedict, S.H.Muscle damage and resting metabolic rate after acute resistance exercise with an eccentric overload. Medicine and Science in Sport and Exercise. Vol. 32. Num. 7. 2000. p. 1202-1207.
-Eston, R.G.; Finney, S.; Baker, S.; Baltzopoulos, V. Muscle tenderness and peak torque changes after downhill running following a prior bout of isokinetic eccentric exercise. Journal of Sports Sciences. Vol. 14. Num. 4. 1996. p. 291-299.
-Favero, T.G.; Zable, A.C.; Bowman, M.B.; Thompson, A.; Abranson, J.J. Metabolic end products inhibit sarcoplasmic reticulum Ca2+ release and [3H] ryanodine binding. Journal of Applied Physiology. Vol. 78. Num. 5. 1995. p. 1665-1672.
-Faulkner, J.A; Jones, D.A.; Round, J.M. Injury to skeletal muscles of mice by forced lengthening during contractions. Quarterly Journal of Experimental Physiology. Vol. 74. 1989. p. 661-670.
-Fitts, R.H. Cellular mechanisms of muscle fatigue. Physiological Reviews. Vol. 74. Num. 1. 1994. p. 49-94.
-Fridén, J.; Sjostrom, J.; Ekblom, B. A morphological study of delayed muscle soreness. Experientia. Vol. 37. 1981. p. 506-507.
-Fridén, J.; Lieber, R.L. Structural and mechanical basis of exercise induced muscle injury. Medicine and Science in Sports and Exercise. Vol. 24. Num. 5. 1992. p. 521-530.
-Garcia, C.K.; Goldstein, J.L.; Pathak, R.K.; Anderson, R.G.W.; Brown, M.S. Molecular characterization of a membrane transporter for lactate, piruvate, and other monocarboxylates: implications for the Cori Cicle. Cell. Vol. 76. 1994. p. 865-873.
-Garrett, JR. W.E. Muscle strain injuries: clinical and basic aspects. Medicine and Science in Sports and Exercise. Vol. 22. Num. 4. 1990. p. 436-443.
-Gibala, M.J.; MacDougall, J.D.; Tarnopolsky, M.A.; Stauber, W.T.; Elorriaga, A. Changes in human skeletal muscle ultrastructure and force prodution after acute resistance exercise. Journal of Applied Physiology. Vol. 78. Num. 2. 1995. p. 702-708.
-Gleesson, M.; Blannin, A.K.; Zhu, B.; Brooks, S.; Cave, R. Cardiorespiratory, hormonal and haematological responses to submaximal cycling performed two days after eccentric or concentric exercise bouts. Journal of Sports Sciences. Vol. 13. Num. 6. 1995. p. 471-479.
-Houston, M.E. Biochemistry Primer for Exercise Science. Champaign: Human Kinetics. 1995.
-Howell, J.N.; Chleboun, G.; Conatser, R. Muscle stiffness, strength loss, swelling and soreness following exercise-induced injury in humans. Journal of Physiology. Vol. 464. 1993. p. 183-196.
-Jackson, V.N; Price, N.T.; Halestrap, A.P. cDNA cloning of MCT1, a monocarboxylate transporter from rat skeletal muscle. Biochimistry and Biophysic Acta. Vol. 1238. Num. 2. 1995. p. 193-196.
-Iwanaga, T.; Takebe, K.; Kato, I.; Karaki, S.; Kuwahara, A. Cellular expression of monocarboxylate transporter (MCT) in the digestive tract of the mouse, rat, and humans, with special reference to slc5a8. Biomedical Research. Vol. 25. Num. 5. 2006.
-Jackson, V.N.; Price, N.T.; Carpenter, L.; Halestrap, A.P. Cloning of the monocarboxylate transporter isoform MCT2 from rat testis provides evidence that expression in tissues is species-specific and may involve post-transcriptional regulation. Biochemistry Journal. Vol. 324. Num. 1. 1997.
-Kuhn, T.S. A Estrutura das Revoluções Científicas.2ª edição. São Paulo: Editora Perspectiva.1987.
-Lee, J.; Goldfarb, A.H.; Rescino, M.H.; Hegde, S.; Patrick, S.; Apperson, K. Eccentric exercise effect on blood oxidative-stress markers anddelayed onset of muscle soreness. Medicine and Science in Sports and Exercise. Vol. 34, Num. 3. 2002. p. 443-448.
-Lent, R. Cem Bilhões de Neurônios: Conceitos Fundamentais de Neurociência. São Paulo: Atheneu. 2001.
-Macintyre, D.L.; Reid, W.D.; Mckenzie, D.C. Delayed muscle soreness. The inflamatory response to muscle injury and its clinical implications. Sports Medicine. Vol. 20. Num. 1. 1995. p. 24-40.
-Mair, J.; Mayr, M.; Müller, E.; Koller, A.; Haid, C.; Artner-Dworzak, E.; Calzolari, C.; Larue, C.; Puschendorf, B. Rapid adaptation to eccentric exercise-induced muscle damage. International. Journal of Sports Medicine. Vol. 16. Num. 6. 1995. p. 352-356.
-Marzzoco, A.; Torres, B.A. Bioquímica Básica, 3ª edição. Rio de Janeiro: Guanabara Koogan. 2007.
-Nosaka, K.; Clarkson, P.M. Effect of eccentric exercise on plasma enzyme activites previously elevated by eccentric exercise. European Journal of Applied Physiology and Occupational Physiology. Vol. 69. Num. 6. 1994. p. 492-497.
-Pen, L.J.; Fisher, C.A. Athletes and pain tolerance. Sports Medicine. Vol. 18. Num. 5. 1994. p. 321-333.
-Pilegaard, H.; Domino, K.; Noland, T.; Juel, C.; Hellsten, Y.; Halestrap, A.P.; Bangsbo, J. Effect oh high-intensity exercise training on lactate/H+ transport capacity in human skeletal muscle. American Journal of Physiology. vol. 276. 1999. p. E255-E261.
-Pyne, D.B. Exercise-induced muscle damage and inflammation: a review. Australian Journal of Science and Medicine in Sport. Vol. 26. Num. 3/4. 1994. p. 49-58.
-Rodenburg, J.B.; e colaboradores. Relations between muscle soreness and biochemical and functional outcomes of eccentric exercise. Journal of Applied Physiology. vol. 74. 1993. p. 2976-2983.
-Roth, D.A; Brooks, G.A. Lactate transport is mediated by a membrane-bound carrier in rat skeletal sarcolemmal vesicles. Archives of Biochemistry and Biophysic. Vol. 279. Num. 2. 1990. p. 377-385.
-Rowlands, A.V.; Eston R.G.; Tilzey, C. Effect of stride length manipulation on symptoms of exercise-induced muscle damage and the repeated bout effect. Journal of Sports Sciences. Vol. 19. Num. 5. 2001. p. 333-340.
-Thompson, J.L.; Riley, D.A. Ultrastructure of muscle eccentric lesions. Medicine and Science in Sports and Exercise. Vol. 28. Num. 5. 1996. p. S113.
-Volfinger, L.; Lassourd, V.; Michaux, J.M.; Braun, J.P.; Toutain, P.L. Kinetic evaluation of muscle damage during exercise by calculation of amount of creatine kinase released. American Journal Physiology. Vol. 266. 1994. R434 -R441.
-Waterman-Storer, C.M. The cytoskeleton of skeletal muscle: is it affected by exercise? A brief review. Medicine and Science in Sports and Exercise. Vol. 23. Num. 11. 1991. p. 1240-1249.
Authors who publish in this journal agree to the following terms:
- Authors retain the copyright and grant the journal the right of first publication, with work simultaneously licensed under the Creative Commons Attribution License BY-NC which allows the sharing of the work with acknowledgment of the authorship of the work and initial publication in this journal.
- Authors are authorized to enter into additional contracts separately for non-exclusive distribution of the version of the work published in this journal (eg, publishing in institutional repository or book chapter), with acknowledgment of authorship and initial publication in this journal.
- Authors are allowed and encouraged to post and distribute their work online (eg, in institutional repositories or on their personal page) at any point before or during the editorial process, as this can bring about productive change as well as increase impact and impact. citation of published work (See The Effect of Free Access).