Long and short pauses during the training of strength do not affect the acute neuromuscular performance

  • Luis Felipe de Camargo Borges Faculdade de Educação Fí­sica, Pontifí­cia Universidade Católica, PUC, Campinas
  • Bernardo Neme Ide Laboratório de Bioquí­mica do Exercí­cio (Labex), Instituto de Biologia, IB, Universidade Estadual de Campinas, Faculdade Metropolitana de Campinas, Metrocamp, Campinas
  • Maria Teresa Krahenbuhl Leitão Faculdade de Educação Fí­sica, Pontifí­cia Universidade Católica, PUC, Campinas
Keywords: Tissue damage, Metabolic stress, Muscular hypertrophy, Training load

Abstract

The present study aimed to observe the influence of different rest intervals between sets in strength training on acute muscle performance. 7 males, practitioners of strength training were divided into two groups (Short rest -N = 4, age: 25.0 6.1 years, body mass: 84.3 11.6kg, height: 1.8 0.1m; Long rest -N = 3, age: 28.3 7.9 years, body mass: 76.0 11.7kg, height: 1.7 0.1m) participated in the experiment. Strength training consisted of 4 sets of 10 repetitions maximum in full squat, with 1 minute rest between sets for the group of Short rest, and 3 minutes to the Long rest. Performance evaluation was performed by the horizontal countermovement jump (SHCM) test at Pre and Post-training. Plasma lactate concentrations were measured at Pre, Post and 15 minutes post-training. No significant differences (p> 0.05) between groups were observed for the total training load, as well as for the performance of SHCM. Lactate concentrationsshowed a significant increase (p <0.05) for both groups at Post and 15' Post relative to Pre, with no significant differences (p> 0.05) between them. The results lead us to conclude that for the experimental group analyzed (strength-trained individuals in) and the volume of exercises, sets and repetitions employed the 1 or 3 minutes rest intervals between sets did not induce different acute training loads and neuromuscular responses. Regardless the rest interval employed the metabolic profile of the training was not different between groups.

References

-Ahtiainen, J. P.; Hakkinen, K. Strength athletes are capable to produce greater muscle activation and neural fatigue during high-intensity resistance exercise than nonathletes. J Strength Cond Res. Vol. 23. Núm. 4. p. 1129-1134. 2009.

-Bogdanis, G. C.; Nevill, M. E.; Boobis, L. H.; Lakomy, H. K.; Nevill, A. M. Recovery of power output and muscle metabolites following 30 s of maximal sprint cycling in man. J Physiol, Vol. 482. p. 467-480. 1995.

-Brooks, G. A. Intra-and extra-cellular lactate shuttles. Medicine & Science in Sports & Exercise. Vol. 32. Núm. 4. p. 790. 2000.

-Byrne, C., Twist, C.; Eston, R. Neuromuscular function after exercise-induced muscle damage: theoretical and applied implications. Sports Med. Vol. 34. Núm. 1. p. 49-69. 2004.

-Campos, G. E.; Luecke, T. J.; Wendeln, H. K.; Toma, K.; Hagerman, F. C.; Murray, T. F.; Ragg, K. E.; Ratamess, N. A.; Kraemer, W. J.; Staron, R. S. Muscular adaptations in response to three different resistance-training regimens: specificity of repetition maximum training zones. Eur J Appl Physiol. Vol. 88. Núm. 1-2p. 50-60. 2002.

-Evangelista, R.; Pereira, R.; Hackney, A. C.; Machado, M. Rest interval between resistance exercise sets: length affects volume but not creatine kinase activity or muscle soreness. Int J Sports Physiol Perform. Vol. 6. Núm. 1. p. 118-127. 2011.

-Felsing, N. E.; Brasel, J. A.; Cooper, D. M. Effect of low and high intensity exercise on circulating growth hormone in men. J Clin Endocrinol Metab. Vol. 75. Núm. 1. p. 157-162. 1992.

-Friden, J. Delayed onset muscle soreness. Scand J Med Sci Sports. Vol. 12. Núm. 6. p. 327-328. 2002.

-Friden, J.; Lieber, R. L. Eccentric exercise-induced injuries to contractile and cytoskeletal muscle fibre components. Acta Physiol Scand. Vol. 171. Núm. 3. p. 321-326. 2001.

-Gibala, M. J.; Interisano, S. A.; Tarnopolsky, M. A.; Roy, B. D.; Macdonald, J. R.; Yarasheski, K. E.; Macdougall, J. D. Myofibrillar disruption following acute concentric and eccentric resistance exercise in strength-trained men. Can J Physiol Pharmacol. Vol. 78. Núm. 8. p. 656-661. 2000.

-Gibala, M. J.; Macdougall, J. D.; Tarnopolsky, M. A.; Stauber, W. T.; Elorriaga, A. Changes in human skeletal muscle ultrastructure and force production after acute resistance exercise. J Appl Physiol. Vol. 78. Núm. 2. p. 702-708. 1995.

-Gladden, L. B. Muscle as a consumer of lactate. Med Sci Sports Exerc. Vol. 32. Núm. 4. p. 764-771. 2000.

-Gladden, L. B. Lactate metabolism: a new paradigm for the third millennium. J Physiol. Vol. 558. p. 5-30. 2004.

-Gladden, L. B. Is there an intracellular lactate shuttle in skeletal muscle? J Physiol. Vol. 582. p.899. 2007.

-Gladden, L. B. Current trends in lactate metabolism: introduction. Med Sci Sports Exerc. Vol. 40. Núm. 3. p. 475-476. 2008.

-Goto, K.; Ishii, N.; Kizuka, T.; Takamatsu, K. The Impact of Metabolic Stress on Hormonal Responses and Muscular Adaptations. Medicine & Science in Sports & Exercise. Vol. 37. Núm. 6. p. 955. 2005.

-Ide, B. N. Muscle Damage and Human Skeletal Muscle Hypertrophy. Biochemistry & Pharmacology: Open Access. Vol. 1. Núm. 5. 2012.

-Ide, B. N.; Leme, T. C.; Lopes, C. R.; Moreira, A.; Dechechi, C. J.; Sarraipa, M. F.; Da Mota, G. R.; Brenzikofer, R.; Macedo, D. V.Time course of strength and power recovery after resistance training with different movement velocities. J Strength Cond Res. Vol. 25. Núm. 7. p. 2025-2033. 2011.

-Macedo, D. V.; Lazarim, F. L.; Catanho Da Silva, F. O.; Tessuti, L. S.; Hohl, R. Is lactate production related to muscular fatigue? A pedagogical propositionusing empirical facts. Adv Physiol Educ. Vol. 33. Núm. 4. p. 302-307. 2009.

-Machado, M.; Koch, A. J.; Willardson, J. M.; Pereira, L. S.; Cardoso, M. I.; Motta, M. K.; Pereira, R.; Monteiro, A. N.Effect of varying rest intervals between sets of assistance exercises on creatine kinase and lactate dehydrogenase responses. J Strength Cond Res. Vol. 25. Núm. 5. p. 1339-1345. 2011.

-Machado, M., Pereira, R.; Willardson, J. M. Short Intervals between Sets and Individuality of Muscle Damage Response. J Strength Cond Res, Dec 8. 2011.

-Machado, M.; Willardson, J. M. Short recovery augments magnitude of muscle damage in high responders. Med Sci Sports Exerc. Vol. 42. Núm. 7. p. 1370-1374. 2010.

-Maulder, P.; Cronin, J. Horizontal and vertical jump assessment: reliability, symmetry, discriminative and predictive ability. Physical therapy in Sport. Vol. 6. Núm. 2. p. 74-82. 2005.

-Robergs, R. A.; Ghiasvand, F.; Parker, D. Biochemistry of exercise-induced metabolic acidosis. Am J Physiol Regul Integr Comp Physiol. Vol. 287. Núm. 3. p. R502-R516. 2004.

-Rodrigues, B. M.; Dantas, E.; De Salles, B. F.; Miranda, H.; Koch, A. J.; Willardson, J. M.; Simao, R. Creatine kinase and lactate dehydrogenase responses after upper-body resistance exercise with different rest intervals. J Strength Cond Res. Vol. 24. Núm. 6. p.1657-1662. 2010.

-Smilios, I.; Pilianidis, T.; Karamouzis, M.; Tokmakidis, S. P. Hormonal responses after various resistance exercise protocols. Med Sci Sports Exerc. Vol. 35. Núm. 4. p. 644-654. 2003.

-Toigo, M.; Boutellier, U. New fundamental resistance exercise determinants of molecular and cellular muscle adaptations. Eur J Appl Physiol. Vol. 97. Núm. 6. p. 643-663. 2006.

-Warren, G. L.; Ingalls, C. P.; Lowe, D. A.; Armstrong, R. B. Excitation-contraction uncoupling: major role in contraction-induced muscle injury. Exerc Sport Sci Rev. Vol. 29. Núm. 2. p. 82-87. 2001.

-Warren, G. L.; Lowe, D. A.; Armstrong, R. B.Measurement tools used in the study of eccentric contraction-induced injury. Sports Med. Vol. 27. Núm. 1. p. 43-59. 1999.

Published
2013-10-13
How to Cite
Borges, L. F. de C., Neme Ide, B., & Leitão, M. T. K. (2013). Long and short pauses during the training of strength do not affect the acute neuromuscular performance. Brazilian Journal of Exercise Prescription and Physiology, 7(40). Retrieved from https://www.rbpfex.com.br/index.php/rbpfex/article/view/544
Section
Scientific Articles - Original