Strength training and myostatin expression

  • Bruno Corrêa Victor Departamento de Ciências do Esporte, Universidade Federal do Triângulo Mineiro
  • Gustavo Ribeiro Mota Departamento de Ciências do Esporte, Universidade Federal do Triângulo Mineiro
  • Bernardo Neme Ide Laboratório de Bioquí­mica do Exercí­cio (LABEX), Instituto de Biologia - IB - Universidade Estadual de Campinas Faculdade Metropolitana de Campinas, Metrocamp
Keywords: Gene expression, Satellite cells, Skeletal muscle hypertrophy

Abstract

Myostatin gene expression was first reported in literature in 1997 and since then it has been considered the main negative regulator of muscle growth process. Its inhibition would lead to one of the most powerful muscle growth processes applied to humans and animals. Following strength training (TF) the MST RNAm expression is reduced to the point of being considered as a marker of the hypertrophy signaling pathways induced by the TF. However, positive associations between basal levels of MST RNAm and muscle mass suggest a new paradox for the tissue growthdue the fact that individuals who are responsive to muscle hypertrophy express high levels of MST. Having noticed, in these researches, different results concerning higher or lower expressions and quantities of RNAm for MST, in this study we aimed at revising such experiments, specific analyzing the subjects analyzed, the TF methodologies and the responses of MST gene expression.

References

-Campos, G. E., Luecke, T. J. ; Wendeln, H. K.; Toma, K.; Hagerman, F. C.; Murray, T. F.; Ragg, K. E.; Ratamess, N. A.; Kraemer, W. J.; Staron, R. S.Muscular adaptations in response to three different resistance-training regimens: specificity of repetition maximum training zones. Eur J Appl Physiol. Vol. 88. Núm. 1-2. p. 50-60. 2002.

-Charge, S. B.; Rudnicki, M. A. Cellular and molecular regulation ofmuscle regeneration. Physiol Rev. Vol. 84. Núm. 1. p. 209-238. 2004.

-Coffey, V. G.; Shield, A.; Canny, B. J.; Carey, K. A.; Cameron-Smith, D.; Hawley, J. A. Interaction of contractile activity and training history on mRNA abundance in skeletal muscle from trained athletes. Am J Physiol Endocrinol Metab. Vol. 290. Núm. 5. p. E849-E855. 2006.

-Costa, A.; Dalloul, H.; Hegyesi, H.; Apor, P.; Csende, Z.; Racz, L.; Vaczi, M.; Tihanyi, J. Impact of repeated bouts of eccentric exercise on myogenic geneexpression. Eur J Appl Physiol. Vol. 101. Núm. 4. p. 427-436. 2007.

-Drummond, M. J.; Fujita, S.; Abe, T.; Dreyer, H. C.; Volpi, E.; Rasmussen, B. B. Human muscle gene expression following resistance exercise and blood flow restriction. Med Sci Sports Exerc. Vol. 40. Núm. 4. p. 691-698. 2008.

-Hawke, T. J. Muscle stem cells and exercise training. Exerc Sport Sci Rev. Vol. 33. Núm. 2. p. 63-68. 2005.

-Hawke, T. J.; Garry, D. J.Myogenic satellite cells: physiology to molecular biology. J Appl Physiol. Vol. 91. Núm.2. p. 534-551. 2001.

-Hulmi, J. J.; Ahtiainen, J. P.; Kaasalainen, T.; Pollanen, E.; Hakkinen, K.; Alen, M.; Selanne, H.; Kovanen, V.; Mero, A. A.Postexercise myostatin and activin IIb mRNA levels: effects of strength training. Med Sci Sports Exerc. Vol. 39. Núm. 2. p. 289-297. 2007.

-Hulmi, J. J.; Tannerstedt, J.; Selanne, H.; Kainulainen, H.; Kovanen, V.; Mero, A. A. Resistance exercise with whey protein ingestion affects mTOR signaling pathway and myostatin in men. J Appl Physiol. 2009.

-Jensky, N. E.; Sims, J. K.; Dieli-Conwright, C. M.; Sattler, F. R.; Rice, J. C.; Schroeder, E. T. Exercise does not influence myostatin and follistatin messenger RNA expression in young women. J Strength Cond Res. Vol. 24. Núm. 2. p. 522-530.

-Joulia-Ekaza, D.; Cabello, G. Myostatin regulation of muscle development: molecular basis, natural mutations, physiopathological aspects. Exp Cell Res. Vol. 312. Núm. 13. p. 2401-2014. 2006.

-Kim, J.; Cross, J. M.; Bamman, M. M. Impact of resistance loading on myostatin expression and cell cycle regulation in young and older men and women. American Journal of Physiology-Endocrinology and Metabolism. Vol. 288. Núm. 6. p. 1110-1119. 2005.

-Kraemer, W. J.; Adams, K.; Cafarelli, E.; Dudley, G. A.; Dooly, C.; Feigenbaum, M. S.; Fleck, S. J.; Franklin, B.; Fry, A. C.; Hoffman, J. R.; Newton, R. U.; Potteiger, J.; Stone, M. H.; Ratamess, N. A.; Triplett-Mcbride, T.American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Med Sci Sports Exerc. Vol. 34. Núm. 2. p. 364-380. 2002.

-Kraemer, W. J.; Ratamess, N. A. Fundamentals of resistance training: progression and exercise prescription. Med Sci Sports Exerc. Vol. 36. Núm. 4. p. 674-688. 2004.

-Lee, S. J.; Mcpherron, A.C. Myostatin and the control of skeletal muscle mass. Curr Opin Genet Dev. Vol. 9. Núm. 5. p. 604-607. 1999.

-Lee, S. J.; Mcpherron, A. C. Regulation of myostatin activity and muscle growth. Proc Natl Acad Sci U S A. Vol. 98. Núm. 16. p. 9306-9311. 2001.

-Lewis, M. I.; Fournier, M.; Storer, T. W.; Bhasin, S.; Porszasz, J.; Ren, S. G.; Da, X.; Casaburi, R. Skeletal muscle adaptations to testosterone and resistance training in men with COPD. J Appl Physiol. Vol. 103. Núm. 4. p. 1299-1310. 2007.

-Louis, E.; Raue, U.; Yang, Y.; Jemiolo, B.;Trappe, S. Time course of proteolytic, cytokine, and myostatin gene expression after acute exercise in human skeletal muscle. J Appl Physiol. Vol. 103. Núm. 5. p.1744-1751. 2007.

-Mascher, H.; Tannerstedt, J.; Brink-Elfegoun, T.; Ekblom, B.; Gustafsson, T.; Blomstrand, E.Repeated resistance exercise training induces different changes in mRNA expression of MAFbx and MuRF-1 in human skeletal muscle. Am J Physiol Endocrinol Metab. Vol. 294. Núm. 1. p. E43-E51. 2008.

-Mauro, A. Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol. Vol. 9. p. 493-495. 1961.

-Mcpherron, A. C., A. M. Lawler E S. J. Lee. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature. Vol. 387. Núm. 6628. p. 83-90. 1997.

-Mcpherron, A. C.; Lee, S. J. Double muscling in cattle due to mutations in the myostatin gene. Proc Natl Acad Sci U S A. Vol. 94. Núm. 23. p. 12457-12461. 1997.

-Paul, A. C.; Rosenthal, N.Different modes of hypertrophy in skeletal muscle fibers. J Cell Biol. Vol. 156. Núm. 4. p. 751-760. 2002.

-Raue, U.; Slivka, D.; Jemiolo, B.; Hollon, C.; Trappe, S. Myogenic gene expression at rest and after a bout of resistance exercise in young (18-30 yr) and old (80-89 yr) women. J Appl Physiol. Vol. 101. Núm.1. p. 53-59. 2006.

-Reardon, K. A.; Davis, J.; Kapsa, R. M. I.; Choong, P.; Byrne, E. Myostatin, insulin-like growth factor-1, and leukemia inhibitory factor mRNAs are upregulated in chronic human disuse muscle atrophy. Muscle & Nerve. Vol. 24. Núm. 7. 2001.

-Roth, S. M.; Martel, G. F.; Ferrell, R. E.; Metter, E. J.; Hurley, B. F.; Rogers, M. A. Myostatin gene expression is reduced in humans with heavy-resistance strength training: a brief communication: SEBM. Vol. 228. p.706-709. 2003.

-Walker, K. S.; Kambadur, R.; Sharma, M.; Smith, H. K. Resistance Training Alters Plasma Myostatin but not IGF-1 in Healthy Men. Medicine & Science in Sports & Exercise. Vol. 36. Núm. 5. p. 787. 2004.

-Willoughby, D. S. Effects of Heavy Resistance Training on Myostatin mRNA and Protein Expression. Medicine & Science in Sports & Exercise. Vol. 36. Núm 4. p. 574. 2004.

-Zambon, A. C.; Mcdearmon, E. L.; Salomonis, N.; Vranizan, K. M.; Johansen, K. L.; Adey, D.; Takahashi, J. S.; Schambelan, M.; Conklin, B. R.Time-and exercise-dependent gene regulation in human skeletal muscle. Genome Biol. Vol. 4. Núm. 10. p. R61. 2003.

Published
2013-10-13
How to Cite
Victor, B. C., Mota, G. R., & Neme Ide, B. (2013). Strength training and myostatin expression. Brazilian Journal of Exercise Prescription and Physiology, 7(41). Retrieved from https://www.rbpfex.com.br/index.php/rbpfex/article/view/545
Section
Scientific Articles - Review